training

Hard light / soft light / specular light / diffuse light by Xuan Prada

These days we are lucky enough to apply the same photographic and cinematographic principles to our work as visual effects artists lighting shots. That's why we are always talking about cinematography and cinematic language. Today we are going to talk about some very common techniques in the cinematography world: hard light, soft light, specular light and diffuse light.

The main difference between hard light and soft light do not eradicate in the light itself but in the shadows. When the shadow is perfectly defined and opaque we talk about hard light. When the shadows are diffuse we called it soft lighting, the shadows will also be less opaque.

Is there any specific lighting source that creates hard or soft lighting? The answer is no. Any light can create hard or soft lighting depending on two factors.

  1. Size: Not only the size of the practical lighting source but also the size in relationship with the subject that is being illuminated.
  2. Distance: In relation to the subject and the placement of the lighting source.

Diffraction refers to various phenomena that occur when a wave encounters an obstacle or a slit. It is defined as the bending of light around the corners of an obstacle or aperture into the region of geometrical shadow of the obstacle.

When a light beam impacts on the surface of an object, if the size of the lighting source is similar to the size of the object, the light beam will go parallel and get slightly curved towards the interior.

If the size of the lighting source is smaller than the object or it is placed far away from it, the light beam won't bend creating very hard and defined shadows.

If the lighting source is bigger than the subject and it's placed near of it, the light beam will get curved a lot generating soft shadows.

If the lighting source is way bigger than the subject and it's place near of it, the light beam will be curved a lot, even they will get mixed at some point. Consequently the profile of the subject will not be represented in the shadows.

If a big lighting source is placed very far of the subject, its size will be altered in relation with the subject, and its behavior will be the same as a small lighting source, generating hard shadows. The most common example of this is the sun. It is very far but still generates hard lighting. Only on cloudy days the sun lights gets diffused by the clouds.

In two lines

  • Soft light: Big lighting sources and or close to the subject.
  • Hard light: Small lighting sources and or far from the subject.

Specular light: Lighting source very powerful in the center that gradually loses energy toward its extremes. Like a traditional torch. It generates very exposed and bright areas in the subject. Like the lights used in photo calls and interviews.

Diffuse light: Lighting source with uniform energy all over its surface. The lighting tends to be more compensated when it hits the subject surface.

Diffuse light and soft light are not the same. When we talk about soft lighting we are talking about soft shadows. When we mention diffuse light we are talking about the distribution of the light, equally distributed along its surface.

Some 3D samples with Legos.

  • Here the character is being lit by a small lighting source, smaller than the character itself and placed far from the subject. We get hard light, hard shadows.
  • Here we have a bigger lighting source, pretty much same size as the character and placed close to it. We get soft lighting, soft shadows.
  • This is a big lighting source, much bigger than the subject. We now get extra soft lighting, losing the shape of the shadows.
  • Now the character is being lit by the sun. The sun is a huge lighting source but being placed far far away from the subject it behaves like a small lighting source generating hard light.
  • Finally there is another example of very hard light caused by the flash of the camera, another very powerful and concentrated point of light placed very close to the subject. You can get this in 3D reducing a lot the spread value of the light.
  • Now a couple of images for specular and diffuse light.

UDIM workflow in Nuke by Xuan Prada

Texture artists, matte painters and environment artists often have to deal with UDIMs in Nuke. This is a very basic template that hopefully can illustrate how we usually handle this situation.

Cons

  • Slower than using Mari. Each UDIM is treated individually.
  • No virtual texturing, slower workflow. Yes, you can use Nuke's proxies but they are not as good as virtual texturing.

Pros

  • No paint buffer dependant. Always the best resolution available.
  • Non destructive workflow, nodes!
  • Save around £1,233 on Mari's license.

Workflow

  • I'll be using this simple footage as base for my matte.
  • We need to project this in Nuke and bake it on to different UDIMs to use it later in a 3D package.
  • As geometry support I'm using this plane with 5 UDIMs.
  • In Nuke, import the geometry support and the footage.
  • Create a camera.
  • Connect the camera and footage using a Project 3D node.
  • Disable the crop option of the Project 3D node. If not the proejctions wouldn't go any further than UV range 0-1.
  • Use a UV Tile node to point to the UDIM that you need to work on.
  • Connect the img input of the UV Tile node to the geometry support.
  • Use  a UV Project node to connect the camera and the geometry support.
  • Set projection to off.
  • Import the camera of the shot.
  • Look through the camera in the 3D view and the matte should be projected on to the geometry support.
  • Connect a Scanline Render to the UV Project.
  • Set the projection model to UV.
  • In the 2D view you should see the UDIM projection that we set previously.
  • If you need to work with a different UDIM just change the UV Tile.
  • So this is the basic setup. Do whatever you need in between like projections, painting and so on to finish your matte.
  • Then export all your UDIMs individually as texture maps to be used in the 3D software.
  • Here I just rendered the UDIMs extracted from Nuke in Maya/Arnold.

RGB masks by Xuan Prada

We use RGB masks all the time in VFX, don't we?
They are very handy and we can save a lot of extra texture maps combining 4 channels in one single texture map RGB+A.

We use them to mix shaders in look-dev stage, or as IDs for compositing, or maybe as utility passes for things like motion blur o depth.

Let's see how I use RGB masks in my common software: Maya, Clarisse, Mari and Nuke.

Maya

  • I use a surface shader with a layered texture connected.
  • I connect all the shaders that I need to mix to the layered texture.
  • Then I use a remapColor node with the RGB mask connected as mask for each one of the shaders.

This is the RGB mask that I'm using.

  • We need to indicate which RGB channel we want to use in each remapColor node.
  • Then just use the output as mask for the shaders.

Clarisse

  • In Clarisse I use a reorder node connected to my RGB mask.
  • Just indicate the desired channel in the channel order parameter.
  • To convert the RGB channel to alpha just type it in the channel order field.

Mari

  • You will only need a shuffle adjustment layer and select the required channel.

Nuke

  • You can use a shuffle node and select the channel.
  • Or maybe a keyer node and select the channel in the operation parameter. (this will place the channel only in the alpha).

New Tutorial Release – Creating HDRI Environments for 3D Lighting by Xuan Prada

My new course for Digital Tutors in out.

What you will learn

In this series of tutorials we will learn how to create HDRI environments for 3D lighting and use them in Maya and V-Ray to light a 3D asset.Throughout the training we will cover the whole lighting process and creating a complete shot from scratch. We will start shooting HDRI on set and we will finish the final shot in NUKE, integrating a 3D asset in a real environment.

 

By the end of this tutorial you will be able to shot your own HDRI panoramas and create 3D light rigs to light your own projects.

Check it out here.

Texturing for VFX film projects. Case study by Xuan Prada

These are the key points of an introduction lecture which I gave about texturing for VFX film projects.
We used different assets on the class but this is the only one which is not copyrighted and I can show here.
I created this asset specifically for this course.

Summary

- Check the model.
- Render a checker scene.
- Decide about the quality needed for the textures. Is it a hero asset?
- UV mapping.
- Organization methods.
- How many UDIM’s?
- Photo Shoot.
- What kind of lighting do I need?
- Accessories. (Color checkers, tripod, polarized filters, angular base, etc).
- Bakes. (dirt maps, dust maps, UVs, etc).
- Grading reference images. Create presets.
- Clean reference images for projections.
- Create cameras and guides in Maya/Softimage for projections.
- Adapt graded and cleaned reference images for projection guides.
- Project in 3D software or Mari. (Mari should be faster).
- Work on the projections inside Mari. (We can use Photoshop, Mari or both of them. Even Nuke).
- Create  a 16 bits sRGB colour textures.
- Test colour channel in the light rig.
- Create a 16 bits gray scale specular textures.
- Create a 16 bits gray scale bump textures.
- Create a 16 bits gray scale displacement textures.
- Create a 8 bits gray scale ISO textures.
- Look-Dev blocking.
- Import the light rig.
- Create a basic pass.
- Checker render (matte).
- Checker render (reflective).
- Create clusters.
- Block materials.
- Look-Dev primary.
- Set up diffuse.
- Set up specular and reflections.
- Balance materials.
- Look-Dev secondary.
- Set up bump.
- Set up displacement.
- Rebalance materials.
- Set up ISO’s.
- Look-Dev refinement.
- Rebalance materials if needed.
- Create material libraries.
- Render turntables.