HDRI

Shooting HDRIs by Xuan Prada

In my next Patreon video I will explain how to capture HDRIs for lighting and lookdev in visual effects. Then we will process all the data in Nuke and Ptgui to create the final textures. Finally everything will be tested using IBL in Houdini and Karma.

This video will be available on my Patreon very soon. Please consider becoming a subscriber to have full access to my library of VFX training.

https://www.patreon.com/elephantvfx

Thanks!

Simple spatial lighting by Xuan Prada

Hello patrons,

I'm about to release my new video "Simple spatial lighting". Here is a quick summary of everything we will be covering. The length of this video is about 3 hours.

- Differences between HDRIs and spatial lighting.
- Simple vs complex workflows for spatial lighting.
- Handling ACES in Nuke, Mari and Houdini.
- Dealing with spherical projections.
- Treating HDRIs and practical lights.
- Image based modelling.
- Baking textures in Arnold/Maya.
- Simple look-dev in Houdini/RenderMan.
- Spatial lighting setup in Houdini/RenderMan.
- Slap comp in Nuke.

Thanks,
Xuan.

Head over my Patreon site to access this video and many more.

Nuke IBL templates by Xuan Prada

Hello,

I just finished recording about 3 hours of content going through a couple of my Nuke IBL templates. The first one is all about cleaning up and artifacts removal. You know, how to get rid of chunky tripods, removing people from set and what not. I will explain to you a couple of ways of dealing with these issues, both in 2D and in 3D using the powerful Nuke's 3D system.

In the second template, I will guide you through the neutralization process, that includes both linearization and white balance. Some people knows this process as technical grading. A very important step that usually lighting supervisors or sequence supervisor deal with before starting to light any VFX shot.

Footage, scripts and other material will be available to you if you are supporting one of the tiers with downloadable material.

Thanks again for your support! and if you like my Patreon feed, please help me to spread the word, I would love to get at least 50 patrons, we are not that far away!

All the info on my Patreon feed.

Ricoh Theta for image acquisition in VFX by Xuan Prada

This is a very quick overview of how I use my tiny Ricoh Theta for lighting acquisition in VFX. I always use one of my two traditional setups for capturing HDRI and bracketed textures but on top of that, I use a Theta as backup. Sometimes if I don't have enough room on-set I might only use a Theta, but this is not ideal.

There is no way to manually control this camera, shame! But using an iPhone app like Simple HDR at least you can do bracketing. Still can't control it, but it is something.

As always capturing any camera data, you will need a Macbeth chart.

For HDRI acquisition it is always extremely important to have good references for you lighting distribution, density, temperature, reflection and shadow. Spheres are a must.

For this particular exercise I'm using a Mini Manfrotto tripod to place my camera above 50cm from the ground aprox.

This is the equitectangular map that I got after merging 7 brackets generated automatically with the Theta. There are 2 major disadvantages if you compare this panorama with the ones you typically get using a traditional DSLR + fisheye setup.

  • Poor resolution, artefacts and aberrations
  • Poor dynamic range

I use HDR merge pro in Photoshop to merge my brackets. It is very fast and it actually works. But never use Photoshop to work with data images.

Once the panorama has been stitched, move to Nuke to neutralise it.

Start by neutralising the plate.
Linearization first, followed by white balance.

Copy the grading from the plate to the panorama.

Save the maps, go to Maya and create an IBL setup.
The dynamic range in the panorama is very low compared with what we would have if were using a traditional DSLR setup. This means that our key light is not going to work very well I'm afraid.

If we compare the CG against the plate, we can easily see that the sun is not working at all.

The best way to fix this issue at this point is going back to Nuke and remove the sun from the panorama. Then crop it and save it as a HDR texture to be mapped in a CG light.

Map the HDR texture to a area light in Maya and place it accordingly.

Now we should be able to match the key light much better.

Final render.

Quick and dirty free IBLs by Xuan Prada

Some of my spare IBLs that I shot while ago using a Ricoh Theta. They contain around 12EV dynamic range. Resolution is not pretty good but it stills holds up for look-dev and lighting tasks.

Feel free to download the equirectangular .exrs here.
Please do not use in commercial projects.

Cafe in Barcelona.

Cafe in Barcelona render test.

Hobo hotel.

Hobo hotel render test.

Campus i12 green room.

Campus i12 green room render test.

Campus i12 class.

Campus i12 class render test.

Chiswick Gardens.

Chiswick Gardens render test.

Environment reconstruction + HDR projections by Xuan Prada

I've been working on the reconstruction of this fancy environment in Hackney Wick, East London.
The idea behind this exercise was recreating the environment in terms of shape and volume, and then project HDRIs on the geometry. Doing this we can get more accurate lighting contribution, occlusion, reflections and color bleeding. Much better environment interaction between 3D assets. Which basically means better integrations for our VFX shots.

I tried to make it as simple as possible, spending just a couple of hours on location.

  • The first thing I did was drawing some diagrams of the environment and using a laser measurer cover the whole place writing down all the information needed for later when working on the virtual reconstruction.
  • Then I did a quick map of the environment in Photoshop with all the relevant information. Just to keep all my annotations clean and tidy.
  • With drawings and annotations would have been good enough for this environment, just because it's quite simple. But in order to make it better I decided to scan the whole place. Lidar scanning is probably the best solution for this, but I decided to do it using photogrammetry. I know it takes more time but you will get textures at the same time. Not only texture placeholders, but true HDR textures that I can use later for projections.
  • I took around 500 images of the whole environment and ended up with a very dense point cloud. Just perfect for geometry reconstruction.
  • For the photogrammetry process I took around 500 shots. Every single one composed of 3 bracketed exposures, 3 stops apart. This will give me a good dynamic range for this particular environment.
  • Combined the 3 brackets to create rectilinear HDR images. Then exported them as both HDR and LDR. The exr HDRs will be used for texturing and the jpg LDR for photogrammetry purpose.
  • Also did a few equirectangular HDRIs with even higher dynamic ranger. Then I projected these in Mari using the environment projection feature. Once I completed the projections from different tripod positions, cover the remaining areas with the rectilinear HDRs.
  • These are the five different HDRI positions and some render tests.
  • The next step is to create a proxy version of the environment. Having the 3D scan this so simple to do, and the final geometry will be very accurate because it's based on photos of the real environment. You could also do a very high detail model but in this case the proxy version was good enough for what I needed.
  • Then, high resolution UV mapping is required to get good texture resolution. Every single one of my photos is 6000x4000 pixels. The idea is to project some of them (we don't need all of them) through the photogrammetry cameras. This means great texture resolution if the UVs are good. We could even create full 3D shots and the resolution would hold up.
  • After that, I imported in Mari a few cameras exported from Photoscan and the correspondent rectilinear HDR images. Applied same lens distortion to them and project them in Mari and/or Nuke through the cameras. Always keeping the dynamic range.
  • Finally exported all the UDIMs to Maya (around 70). All of them 16 bit images with the original dynamic range required for 3D lighting.
  • After mipmapped them I did some render tests in Arnold and everything worked as expected. I can play with the exposure and get great lighting information from the walls, floor and ceiling. Did a few render tests with this old character.

Promote Control + 5D Mark III by Xuan Prada

Each camera works a little bit different regarding the use of the Promote Control System for automatic tasks. In this particular case I'm going to show you how to configure both, Canon EOS 5D Mark III and Promote Control for it's use on VFX look-dev and lighting image acquisition.

  • You will need the following:
    • Canon EOS 5D Mark III
    • Promote Control
    • USB clable + adaptor
    • Shutter release CN3
  • Connect both cable to the camera and to the Promote Control.
  • Turn on the Promote Control and press simultaneously right and left buttons to go to the menu.
  • In the setup menu 2 "Use a separate cable for shutter release" select yes. 
  • In the setup menu 9 "Enable exposures below 1/4000" select yes. This is very important if you need more than 5 brackets for your HDRIs.
  • Press the central button to exit the menu.
  • Turn on your Canon EOS 5D Mark III and go to the menu.
  • Mirror lock-up should be off.
  • Long exposure noise reduction should be off as well. We don't want to vary noise level between brackets.
  • Find your neutral exposure and pass the information on to the Promote Control.
  • Select the desired number of brackets and you are ready to go.



Akromatic base by Xuan Prada

As VFX artists we always need to place our color charts and lighting checkers (or practical spheres) somewhere on the ground while shooting bracketed images for panoramic HDRI creation. And we know that every single look-development and / or lighting artist is going to request at least all these references for their tasks back at the facility.

I'm tired of seeing my VFX peers working on set placing their lighting checkers and color charts on top of their backpacks or hard cases to make them visible on their HDRIs. In the best scenario they usually put the lighting checkers on a tripod with it's legs bended.

I've been using my own base to place my lighting checkers and all my workmates keep asking me about it, so it's time to make it available for all of you working on set on a daily basis.

The akromatic base is light, robust and made of high quality stainless steel. It is super simple to attach our lighting checkers to it and keep them safe and more important, visible in all your images. Moving all around the set with your lighting checkers and color charts from take to take is now simple, quick and safe.

The akromatic base is compatible with our lighting checkers "Mono" and "Twins".

IBL and sampling in Clarisse by Xuan Prada

Using IBLs with huge ranges for natural light (sun) is just great. They give you a very consistent lighting conditions and the behaviour of the shadows is fantastic.
But sampling those massive values can be a bit tricky sometimes. Your render will have a lot of noise and artifacts, and you will have to deal with tricks like creating cropped versions of the HDRIs or clampling values out of Nuke.

Fortunately in Clarisse we can deal with this issue quite easily.
Shading, lighting and anti-aliasing are completely independent in Clarisse. You can tweak on of them without affecting the other ones saving a lot of rendering time. In many renderers shading sampling is multiplied by anti-aliasing sampling which force the users to tweak all the shaders in order to have decent render times.

  • We are going to start with this noisy scene.
  • The first thing you should do is changing the Interpolation Mode to 
    MipMapping
    in the Map File of your HDRI.
  • Then we need to tweak the shading sampling.
  • Go to raytracer and activate previz mode. This will remove lighting 
    information from the scene. All the noise here comes from the shaders.
  • In this case we get a lot of noise from the sphere. Just go to the sphere's material and increase the reflection quality under sampling.
  • I increased the reflection quality to 10 and can't see any noise in the scene any more. 
  • Select again the raytracer and deactivate the previz mode. All the noise here is coming now from lighting.
  • Go to the gi monte carlo and disable affect diffuse. Doing this gi won't affect lighting. We have now only direct lighting here. If you see some noise just increase the sampling of our direct lights.
  • Go to the gi monte carlo and re-enable affect diffuse. Increase the quality until the noise disappears.
  • The render is noise free now but it still looks a bit low res, this is because of the anti-aliasing. Go to raytracer and increase the samples. Now the render looks just perfect.
  • Finally there is a global sampling setting that usually you won't have to play with. But just for your information, the shading oversampling set to 100% will multiply the shading rays by the anti-aliasing samples, like most of the render engines out there. This will help to refine the render but rendering times will increase quite a bit.
  • Now if you want to have quick and dirt results for look-dev or lighting just play with the image quality. You will not get pristine renders but they will be good enough for establishing looks.

HDRI shooting (quick guide) by Xuan Prada

This is a quick introduction to HDRI shooting on set for visual effects projects.
If you want to go deeper on this topic please check my DT course here.

Equipment

This list below is a professional equipment for HDRI shooting. Good results can be achieved using amateur gear, don't necessary need to spend a lot of money for HDRI capturing, but the better equipment you own the easier, faster and better result you'll get. Obviously this gear is based on my taste.

  • Lowepro Vertex 100 AW backpack
  • Lowepro Flipside Sport 15L AW backpack
  • Full frame digital DSLR (Nikon D800)
  • Fish-eye lens (Nikkor 10.5mm)
  • Multi purpose lens (Nikkor 28-300mm)
  • Remote trigger
  • Tripod
  • Panoramic head (360 precision Atome or MK2)
  • akromatic kit (grey ball, chrome ball, tripod plates)
  • Lowepro Nova Sport 35L AW shoulder bag (for aromatic kit)
  • Macbeth chart
  • Material samples (plastic, metal, fabric, etc)
  • Tape measurer
  • Gaffer tape
  • Additional tripod for akromatic kit
  • Cleaning kit
  • Knife
  • Gloves
  • iPad or laptop
  • External hard drive
  • CF memory cards
  • Extra batteries
  • Data cables
  • Witness camera and/or second camera body for stills

All the equipment packed up. Try to keep everything small and tidy.

All your items should be easy to pick up.

Most important assets are: Camera body, fish-eye lens, multi purpose lens, tripod, nodal head, macbeth chart and lighting checkers.

Shooting checklist

  • Full coverage of the scene (fish-eye shots)
  • Backplates for look-development (including ground or floor)
  • Macbeth chart for white balance
  • Grey ball for lighting calibration 
  • Chrome ball for lighting orientation
  • Basic scene measurements
  • Material samples
  • Individual HDR artificial lighting sources if required

Grey and chrome spheres, extremely important for lighting calibration.

Macbeth chart is necessary for white balance correction.

Before shooting

  • Try to carry only the indispensable equipment. Leave cables and other stuff in the van, don’t carry extra weight on set.
  • Set-up the camera, clean lenses, format memory cards, etc, before start shooting. Extra camera adjustments would be required at the moment of the shooting, but try to establish exposure, white balance and other settings before the action. Know you lighting conditions.
  • Have more than one CF memory card with you all the time ready to be used.
  • Have a small cleaning kit with you all the time.
  • Plan the shoot: Write a shooting diagram with your own checklist, with the strategies that you would need to cover the whole thing, knowing the lighting conditions, etc.
  • Try to plant your tripod where the action happens or where your 3D asset will be placed.
  • Try to reduce the cleaning area. Don’t put anything on your feet or around the tripod, you will have to hand paint it out later in Nuke.
  • When shooting backplates for look-dev use a wide lens, something around 24mm to 28mm and cover always more space, not only where the action occurs.
  • When shooting textures for scene reconstruction always use a Macbeth chart and at least 3 exposures.

Methodology

  • Plant the tripod where the action happens, stabilise it and level it
  • Set manual focus
  • Set white balance
  • Set ISO
  • Set raw+jpg
  • Set apperture
  • Metering exposure
  • Set neutral exposure
  • Read histogram and adjust neutral exposure if necessary
  • Shot slate (operator name, location, date, time, project code name, etc)
  • Set auto bracketing
  • Shot 5 to 7 exposures with 3 stops difference covering the whole environment
  • Place the aromatic kit where the tripod was placed, and take 3 exposures. Keep half of the grey sphere hit by the sun and half in shade.
  • Place the Macbeth chart 1m away from tripod on the floor and take 3 exposures
  • Take backplates and ground/floor texture references
  • Shoot reference materials
  • Write down measurements of the scene, specially if you are shooting interiors.
  • If shooting artificial lights take HDR samples of each individual lighting source.

Final HDRI equirectangular panorama.

Exposures starting point

  • Day light sun visible ISO 100 F22
  • Day light sun hidden ISO 100 F16
  • Cloudy ISO 320 F16
  • Sunrise/Sunset ISO 100 F11
  • Interior well lit ISO 320 F16
  • Interior ambient bright ISO 320 F10
  • Interior bad light ISO 640 F10
  • Interior ambient dark ISO 640 F8
  • Low light situation ISO 640 F5

That should be it for now, happy shooting :)